logo IPST4 IPST4
  • วีดิทัศน์
  • คลังภาพ
  • บทความ
  • โครงงาน
  • บทเรียน
  • แผนการสอน
  • E-Books
    • คู่มือครู
    • คู่มือการใช้หลักสูตร
    • ชุดสื่อ 60 พรรษา
    • หนังสือเรียน
    • Ebook อื่นๆ
  • Apps
  • เกี่ยวกับ scimath
  • ติดต่อเรา
  • สรุปข้อมูล
  • แผนผังเว็บไซต์
Login
Login / Register
  • สมัครสมาชิก
  • ลืมรหัสผ่าน
  • วีดิทัศน์
  • คลังภาพ
  • บทความ
  • โครงงาน
  • บทเรียน
  • แผนการสอน
  • E-Books
    • คู่มือครู
    • คู่มือการใช้หลักสูตร
    • ชุดสื่อ 60 พรรษา
    • หนังสือเรียน
    • Ebook อื่นๆ
  • Apps
  • เกี่ยวกับ scimath
  • ติดต่อเรา
  • สรุปข้อมูล
  • แผนผังเว็บไซต์
Login
Login / Register
  • สมัครสมาชิก
  • ลืมรหัสผ่าน
  • learning space
  • ระบบอบรมครู
  • ระบบการสอบออนไลน์
  • ระบบคลังความรู้
  • สสวท.
  • สำนักงานสลากกินแบ่ง
  • วีดิทัศน์
  • คลังภาพ
  • บทความ
  • โครงงาน
  • บทเรียน
  • แผนการสอน
  • E-Books
    • คู่มือครู
    • คู่มือการใช้หลักสูตร
    • ชุดสื่อ 60 พรรษา
    • หนังสือเรียน
    • E-Books อื่นๆ
  • Apps
Login
Login / Register
  • สมัครสมาชิก
  • ลืมรหัสผ่าน
ค้นหา
    

ค้นหาบทความ

กลุ่มเป้าหมาย
ระดับชั้น
สาขาวิชา/กลุ่มสาระวิชา
การกรองเปลี่ยนแปลง โปรดคลิกที่ส่งเมื่อดำเนินการเสร็จ
เลือกหมวดหมู่
    
  • บทความทั้งหมด
  • ฟิสิกส์
  • เคมี
  • ชีววิทยา
  • คณิตศาสตร์
  • เทคโนโลยี
  • โลก ดาราศาสตร์ และอวกาศ
  • วิทยาศาสตร์ทั่วไป
  • สะเต็มศึกษา
  • อื่น ๆ
  • หน้าแรก
  • บทความ
  • คณิตศาสตร์
  • ตรีโกณมิติคืออะไร ?

ตรีโกณมิติคืออะไร ?

โดย :
myfirstbrain
เมื่อ :
วันอังคาร, 14 มิถุนายน 2554
Hits
31668

ตรีโกณมิติ (จากภาษากรีก trigonon มุม 3 มุม และ metro การวัด) เป็นสาขาของคณิตศาสตร์ที่เกี่ยวข้องกับมุม, รูปสามเหลี่ยม และฟังก์ชันตรีโกณมิติ เช่น ไซน์ และ โคไซน์ มีความเกี่ยวข้องกับเรขาคณิต แม้ว่าจะสรุปไม่ได้อย่างแน่ชัดว่า ตรีโกณมิติเป็นหัวข้อย่อยของเรขาคณิต

ประวัติตรีโกณมิติ

นักคณิตศาสตร์มุสลิมในยุคกลาง (หรือยุคมืด ตามคำเรียกของชาวยุโรป) มีส่วนเป็นอย่างมากในการพัฒนาและอุทิศผลงานในคณิตศาสตร์สาขาตรีโกณมิติ โดยพวกเขาได้รับแนวคิดพื้นฐานมาจาก
1. ตำราคณิตศาสตร์อินเดียที่ชื่อ Sūrya Siddhānta (สูรยสิทธานตะ)

2. ตำราอัลมาเกส (เป็นภาษาอาหรับแปลว่ายิ่งใหญ่ที่สุด แสดงให้เห็นว่านักคณิตศาสตร์อาหรับยกย่องหนังสือเล่มนี้มาก) ของทอเลมีนักคณิตศาสตร์ที่มีชื่อเสียงชาวกรีก

3. ตำราสเฟียริก ของเมเนลาอุสนักคณิตศาสตร์ชาวกรีกเช่นกัน

อย่างไรก็ตาม ถึงแม้ว่านักคณิตศาสตร์กรีกและอินเดียจะมีบทบาทในการพัฒนาตรีโกณมิติ แต่ทว่านักประวัติศาสตร์คณิตศาสตร์หลายท่าน ได้ให้เกียรตินักคณิตศาสตร์อาหรับว่า เป็นผู้พัฒนาความรู้ในสาขานี้อย่างแท้จริง

สำหรับประเทศไทยนั้น ก็มีศาสตร์ตรีโกณมิติเข้ามาตั้งแต่สมัยสุโขทัย ผ่านทางคัมภีร์ สุริยยาตร์ สำหรับคำนวณหาตำแหน่งพระอาทิตย์และพระจันทร์ และปรากฏการณ์ข้างขึ้นข้างแรม (เพียร) โดยปรากฏตาราง SINE ทุกๆ มุม 15 องศา เรียกว่า ตารางฉายา ส่วน COSINE จะใช้หลักการเทียบจากตารางฉายา เรียกว่า โกฏิฉายา

ตรีโกณมิติวนนี้

ปัจจุบัน มีการนำตรีโกณมิติไปใช้ในงานสาขาต่างๆ เช่น เป็นเทคนิคในการสร้างรูปสามเหลี่ยม ซึ่งใช้ในวิชาดาราศาสตร์เพื่อวัดระยะทางของดาวที่อยู่ใกล้ ในภูมิศาสตร์ใช้วัดระยะทางระหว่างหลักเขตที่ดิน และใช้ในดาวเทียมนำทาง งานที่มีการใช้ประโยชน์จากตรีโกณมิติ ได้แก่ ดาราศาสตร์ (และการนำทางในมหาสมุทร บนเครื่องบิน และในอวกาศ) ,ทฤษฎีดนตรี, สวนศาสตร์, ทัศนศาสตร์, การวิเคราะห์ตลาดการเงิน, อิเล็กทรอนิกส์, ทฤษฎีความน่าจะเป็น, สถิติศาสตร์, ชีววิทยา, การสร้างภาพทางการแพทย์ (การกราดภาพตัดขวางใช้คอมพิวเตอร์ช่วย (CAT scans) และ คลื่นเสียงความถี่สูง) , เภสัชศาสตร์, เคมี, ทฤษฎีจำนวน (รวมถึง วิทยาการเข้ารหัสลับ) , วิทยาแผ่นดินไหว, อุตุนิยมวิทยา, สมุทรศาสตร์, วิทยาศาสตร์กายภาพสาขาต่างๆ, การสำรวจพื้นดิน และภูมิมาตรศาสตร์, สถาปัตยกรรม, สัทศาสตร์, เศรษฐศาสตร์, วิศวกรรมไฟฟ้า, วิศวกรรมเครื่องกล, วิศวกรรมโยธา, เรขภาพคอมพิวเตอร์, การทำแผนที่, ผลิกศาสตร์

ประวัติตรีโกณมิติ

รูปสามเหลี่ยมสองรูปจะเรียกว่าคล้ายกัน ถ้ารูปหนึ่งสามารถขยายได้เป็นอีกรูปหนึ่ง และจะเป็นกรณีนี้ก็ต่อเมื่อมุมที่สมนัยกันมีขนาดเท่ากัน ตัวอย่างเช่น รูปสามเหลี่ยมสองรูปที่มีมุมร่วมกันมุมหนึ่ง และด้านที่ตรงข้ามกับมุมนั้นขนานกัน เป็นข้อเท็จจริงว่ารูปสามเหลี่ยมที่คล้ายกัน ด้านแต่ละด้านจะเป็นสัดส่วนกัน นั่นคือ ถ้าด้านที่ยาวที่สุดของรูปสามเหลี่ยมหนึ่ง ยาวเป็นสองเท่าของด้านที่ยาวที่สุดของรูปสามเหลี่ยมที่คล้ายกัน จะกล่าวได้ว่า ด้านที่สั้นที่สุดจะยาวเป็นสองเท่าของด้านที่สั้นที่สุดของอีกรูปสามเหลี่ยม และด้านที่ยาวปานกลางก็จะเป็นสองเท่าของอีกรูปสามเหลี่ยมเช่นกัน อัตราส่วนระหว่างด้านที่ยาวที่สุดและด้านที่สั้นที่สุดของรูปสามเหลี่ยมแรก จะเท่ากับ อัตราส่วนระหว่างด้านที่ยาวที่สุดและด้านที่สั้นที่สุดของรูปสามเหลี่ยมอีก รูปด้วย

จากข้อเท็จจริงเหล่านี้ เราจะนิยามฟังก์ชันตรีโกณมิติ เริ่มต้นด้วยรูปสามเหลี่ยมมุมฉาก ซึ่งเป็นรูปสามเหลี่ยมซึ่งมีมุมฉากหนึ่งมุม (90 องศา หรือ /2 เรเดียน) ด้านที่ยาวที่สุดในรูปสามเหลี่ยมใดๆจะอยู่ตรงข้ามกับมุมที่ใหญ่ที่สุด แต่เพราะว่าผลรวมของมุมภายในรูปสามเหลี่ยมเท่ากับ 180 องศา หรือ เรเดียน ดังนั้นมุมที่ใหญ่ที่สุดในรูปสามเหลี่ยมนี้คือมุมฉาก ด้านที่ยาวที่สุดในรูปสามเหลี่ยมจึงเป็นด้านที่ตรงข้ามกับมุมฉาก เรียกว่า ด้านตรงข้ามมุมฉาก

นำรูปสามเหลี่ยมมุมฉากมาสองรูปที่มีมุม A ร่วมกัน รูปสามเหลี่ยมทั้งสองนี้จะคล้ายกัน และอัตราส่วนของด้านตรงข้ามมุม A ต่อด้านตรงข้ามมุมฉาก จะเท่ากันทั้งสองรูป มันจะเป็นจำนวนระหว่าง 0 ถึง 1 ขึ้นอยู่กับขนาดของมุม A เท่านั้น เราเรียกว่า ไซน์ของ A และเขียนด้วย sin (A) ในทำนองเดียวกัน เรานิยาม โคไซน์ของ A คืออัตราส่วนระหว่าง ด้านประชิดมุม A ต่อด้านตรงข้ามมุมฉาก

ฟังก์ชันเหล่านี้เป็นฟังก์ชันตรีโกณมิติที่สำคัญ ฟังก์ชันอื่นๆสามารถนิยามโดยใช้อัตราส่วนของด้านต่างๆของรูปสามเหลี่ยม แต่มันก็สามาถเขียนได้ในรูปของ ไซน์ และ โคไซน์ ฟังก์ชันเหล่านี้คือ แทนเจนต์, ซีแคนต์, โคแทนเจนต์, และ โคซีแคนต์



วิธีจำ ไซน์ โคไซน์ แทนเจนต์ อย่างง่ายๆคือจำว่า ข้ามฉาก ชิดฉาก ข้ามชิด (ไซน์-ด้านตรงข้าม-ด้านตรงข้ามมุมฉาก โคไซน์-ด้านประชิด-ด้านตรงข้ามมุมฉาก แทนเจนต์-ด้านตรงข้าม-ด้านประชิด)

ที่ผ่านมา ฟังก์ชันตรีโกณมิติถูกนิยามขึ้นสำหรับมุมระหว่าง 0 ถึง 90 องศา (0 ถึง /2 เรเดียน) เท่านั้น หากใช้วงกลมหนึ่งหน่วย จะขยายได้เป็นจำนวนบวกและจำนวนลบทั้งหมด

ครั้งหนึ่ง ฟังก์ชันไซน์และโคไซน์ถูกจัดลงในตาราง (หรือคำนวณด้วยเครื่องคิดเลข) ทำให้ตอบคำถามทั้งหมดเกี่ยวกับรูปสามเหลี่ยมใดๆ ได้อย่างแท้จริง โดยใช้กฎไซน์ และ กฎโคไซน์

กฎเหล่านี้สามาถใช้ในการคำนวณมุมที่เหลือและด้านของรูปสามเหลี่ยมได้ เมื่อรู้ความยาวด้านสองด้านและขนาดของมุมหนึ่งมุม หรือรู้ขนาดของมุมสองมุมและความยาวของด้านหนึ่งด้าน หรือ รู้ความยาวของด้านทั้งสามด้าน

นักคณิตศาสตร์บางคนเชื่อว่าตรีโกณมิติแต่เดิมนั้น ถูกประดิษฐ์ชึ้นเพื่อใช้คำนวณนาฬิกาแดด ซึ่งมักเป็นโจทย์ในหนังสือเก่าๆ ที่มีความสำคัญมากในเรื่องการสำรวจ

 

หัวเรื่อง และคำสำคัญ
ตรีโกณมิติ
ประเภท
Text
ประเภท แบ่งตามผลผลิต สสวท.
บทความ
รูปแบบการนำเสนอ แบ่งตามผลผลิต สสวท.
สื่อสิ่งพิมพ์ในรูปแบบดิจิทัล
ลิขสิทธิ์
สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.)
วันที่เสร็จ
วันอังคาร, 14 มิถุนายน 2554
ผู้แต่ง หรือ เจ้าของผลงาน
myfirstbrain
สาขาวิชา/กลุ่มสาระวิชา
คณิตศาสตร์
ระดับชั้น
ม.4
ม.5
ม.6
ช่วงชั้น
มัธยมศึกษาตอนปลาย
กลุ่มเป้าหมาย
ครู
นักเรียน
บุคคลทั่วไป
  • 1903 ตรีโกณมิติคืออะไร ? /article-mathematics/item/1903-what-is-trigonometry
    คลิ๊กเพื่อติดตาม
    เพิ่มในรายการโปรด
  • ให้คะแนน
    คะแนนเฉลี่ย
    • 1
    • 2
    • 3
    • 4
    • 5
    • Share
    • Tweet
    • Share

คุณอาจจะสนใจ
Guard Cell : เซลล์คุม (รูปเมล็ดถั่ว)
Guard Cell : เซลล์คุม (รูปเมล็ดถั่ว)
Hits ฮิต (31265)
ให้คะแนน
Guard Cell : เซลล์คุม (รูปเมล็ดถั่ว) สุทธิพงษ์ พงษ์วร Guard cell หรือเซลล์คุม เป็นชื่อเรียกเซลล์ที่ ...
หมู่เลือดโอบอมเบย์
หมู่เลือดโอบอมเบย์
Hits ฮิต (20079)
ให้คะแนน
หมู่เลือดโอบอมเบย์ โดย...นางสาวอรลา ชูลกลุ หมู่เลือดโอบอมเบย์มีอะไรที่แตกต่างจากหมู่เลือดโอ ???? หม ...
เห็ดมีพิษ ในสกุล อะมานิต้า ( Amanita ) ตอนที่ 1
เห็ดมีพิษ ในสกุล อะมานิต้า ( Amanita ...
Hits ฮิต (21361)
ให้คะแนน
เห็ดมีพิษ ในสกุล อะมานิต้า ( Amanita ) ตอนที่ 1 สุนทร ตรีนันทวัน เห็ดที่ขึ้นในธรรมชาติ บางชนิดเป็นเ ...

ค้นหาบทความ

กลุ่มเป้าหมาย
ระดับชั้น
สาขาวิชา/กลุ่มสาระวิชา
การกรองเปลี่ยนแปลง โปรดคลิกที่ส่งเมื่อดำเนินการเสร็จ
  • บทความทั้งหมด
  • ฟิสิกส์
  • เคมี
  • ชีววิทยา
  • คณิตศาสตร์
  • เทคโนโลยี
  • โลก ดาราศาสตร์ และอวกาศ
  • วิทยาศาสตร์ทั่วไป
  • สะเต็มศึกษา
  • อื่น ๆ
  • เกี่ยวกับ SciMath
  • ติดต่อเรา
  • สรุปข้อมูล
  • แผนผังเว็บไซต์
  • คำถามที่พบบ่อย
Scimath คลังความรู้

สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.) กระทรวงศึกษาธิการ เป็นหน่วยงานของรัฐที่ไม่แสวงหากำไร ได้จัดทำเว็บไซต์คลังความรู้ SciMath เพื่อส่งเสริมการสอนวิทยาศาสตร์ คณิตศาสตร์และเทคโนโลยีทุกระดับการศึกษา โดยเน้นการศึกษาขั้นพื้นฐานเป็นหลัก หากท่านพบว่ามีข้อมูลหรือเนื้อหาใด ๆ ที่ละเมิดทรัพย์สินทางปัญญาปรากฏอยู่ในเว็บไซต์ โปรดแจ้งให้ทราบเพื่อดำเนินการแก้ปัญหาดังกล่าวโดยเร็วที่สุด

The Institute for the Promotion of Teaching Science and Technology (IPST), Ministry of Education, a non-profit organization under the Thai government, developed SciMath as a website that provides educational resources in Science, Mathematics and Technology. IPST invites visitors to use its online resources for personal, educational and other non-commercial purpose. If there are any problems, please contact us immediately.

Copyright © 2018 SCIMATH :: คลังความรู้ SciMath. Terms and Conditions. , All Rights Reserved. 
อีเมล: This email address is being protected from spambots. You need JavaScript enabled to view it. (ให้บริการในวันและเวลาราชการเท่านั้น)